

vedicpy documentation

[image: Logo]
A Python Package for Vedic Mathematics

[image: PyPI]
 [https://pypi.python.org/pypi/vedicpy][image: Python Version]
 [https://pypi.python.org/pypi/vedicpy][image: License]
 [https://github.com/utkarsh0702/vedicpy/blob/master/LICENSE]For humans, through regular mathematical steps, solving problems sometimes are complex and time-consuming. But using Vedic Mathematic’s General Techniques (applicable to all sets of given data) and Specific Techniques (applicable to specific sets of given data), numerical calculations can be done very fast.

This package is a python implementation of Vedic mathematical sutras. It uses the Vedic mathematics for performing basic mathematical operations like multiplication, division, square roots, cube roots etc.

Since Vedic maths sutras work on individual digits in a number as opposed to the whole number, the implementation works slower on small digit numbers but works faster on larger digit numbers and some other operations like finding the square root or the cube root of a number.

Getting started

	Installation

	Tutorial

	Troubleshooting

Functional Documentation

	Compliment

	Cube

	Cuberoot

	Divisibility

	Division

	Multiplication

	Recurring

	Square

	Squareroot

Others

	BSD 3-Clause License

	Help and Contact

	Contributing

	Credits

Installation

The simplest way to install vedicpy is through the Python Package Index (PyPI). This will ensure that all required dependencies are fulfilled. This can be achieved by executing the following command:

pip install vedicpy

Tutorial

This section covers the fundamentals of developing with vedicpy, including
a package overview, basic and advanced usage.

Overview

The vedicpy package is structured as collection of submodules:

	vedicpy

	
	vedicpy.compliment

	Functions for calculating the compliment of a number.

	
	vedicpy.cube

	Functions for calculating cube of a number.

	
	vedicpy.cuberoot

	Functions for checking and calculating cube root of a number.

	
	vedicpy.divisibility

	Function for finding whether a number is divisible by the given number or not.

	
	vedicpy.division

	Function for calculating quotient and reminder.

	
	vedicpy.multiply

	Functions for calculating the multiplication of two number using vedic mathematical sutras.

	
	vedicpy.recurring

	Function for converting fractional number to its corresponding recurring decimal.

	
	vedicpy.square

	Functions for calculating square of a number.

	
	vedicpy.squareroot

	Functions for checking and calculating square root of a number.

Quickstart

Before diving into the details, we’ll walk through a brief example program

Example of calculating the cube of a number
import vedicpy as vedic

calling cube_2digit_number from vedic.cube
result = vedic.cube.cube_2digit_number(67)

print(result)

In the program we first call the package by using import and by giving a compact syntax to it by using vedic as the name.

Then we simply call the cube_2digit_number function from cube module present in vedicpy.

As the name suggest cube_2digit_number function only cubes 2 digit integer numbers and returns an interger value that is stored in variable result and then we simply print that value of the variable.

Troubleshooting

If you have questions about how to use vedicpy, please email me at utkarsh.um07@gmail.com.

For bug reports and other, more technical issues, consult the github issues [https://github.com/utkarsh0702/vedicpy/issues].

Important Error

Vedic Mathematics doesn’t provide a way to calculate square root and cube root accurately. So, if it says that the number is a perfect square or a perfect cube there is still some chance that it is not.

Compliment

1) compliment_to_power_of10

The Complement of a number is the difference between that number and the next higher power of 10. 3 is the complement of 7 (as next higher power of 7 is 10). 34 is the complement of 66 (as next higher power of 66 is 100).

Vedic Sutra:

Nikhilam Navatah Charamam Dasatah

which means, All from 9 and last from 10.

Details: We have to get the complement (Nikhilam) for the entire number by using 10 for the digit in the units place and by using 9 for the remaining digits.

Implementation:

import vedicpy as vedic

a= vedic.compliment.compliment_to_power_of10(123)
print(a)

>>> 877

Cube

1) cube_a_number_near_powerof10

[image: Yavadunam Methord]
Implementation:

import vedicpy as vedic

a= vedic.cube.cube_a_number_near_powerof10(103)
print(a)

>>> 1092727

2) cube_2digit_number

[image: Cubing 2 digit number]
[image: Example]
Implementation:

import vedicpy as vedic

a= vedic.cube.cube_2digit_number(37)
print(a)

>>> 50653

Cuberoot

1) cuberoot_check

Let’s define something called a Digital root [https://en.wikipedia.org/wiki/Digital_root].

It is the sum obtained after iteratively adding the digits of a number, till a single digit remains.

For example,

	For 345, digital root of 345 => 3 + 4 + 5 =12. Now, 12 => 1+2 = 3.12=1+2=3. So, digital root of 345 = 3.

	For 12345678, digital root is 1+2+3+4+5+6+7+8 = 36. Now, 3+6 = 9. So, digital root of 12345678 = 9.

Turns out that for all perfect cubes, the digital root will either be 1,8,9. 0 is not included as 0 is a perfect cube of itself.

Anyways, if for a number xx you get a digital root that is not 1,8,9 you can confidently say that xx is NOT a perfect cube.

If the digital root is 1, 8, 9, 0 the number may or may not be a perfect cube.

Implementation:

import vedicpy as vedic

a= vedic.cuberoot.cuberoot_check(123)
print(a)
print(type(a))

>>> False
>>> <class 'bool'>

This function returns a boolean value.

2) cuberoot_under_1000000

[image: cuberoot example]
Implementation:

import vedicpy as vedic

a= vedic.cuberoot.cuberoot_under_1000000(175616)
print(a)

>>> 56

Vedic Mathematics doesn’t provide a way to cube root accurately. So, if it says that the number is a perfect cube there is still some chance that it is not.

Divisibility

1) divisibility_under10

[image: divisibility test]
Implementation:

import vedicpy as vedic

divisibility_under10() function takes two arguments,
first one is dividend and the other one is divisor
vedic.divisibility.divisibility_under10(108, 9)

>>> The number is divisible.

The function doesn’t return any value.

The divisibility test is only applicable for divisor less than 10 excluding 1 and 7.

Division

1) division_by9

[image: division]
Implementation:

import vedicpy as vedic

division_by9() function takes a single argument that is divident.
vedic.division.division_by9(110)

>>> The quotent is: 12
>>> The reminder is: 2

The function doesn’t return any value.

Multiplication

1) multiply_by_9group

[image: Multiply by 9 group]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by_9group(234)
print(a)

>>> 233766

2) multiply_base_near_powerof10

[image: Near power of 10]
[image: Near power of 10]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_base_near_powerof10(109,91)
print(a)

>>> 9919

3) multiply_equdigit_number

[image: Equal digits]
[image: Equal digits]
[image: Equal digits]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_equdigit_number(1234, 4567)
print(a)

>>> 5635678

4) multiply_lastdigit_sumto10

[image: Last digit sum to 10]
[image: Last digit sum to 10]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_lastdigit_sumto10(24, 26)
print(a)

>>> 624

5) multiply_by11

[image: Multiply by 11]
[image: Multiply by 11]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by11(103)
print(a)

>>> 1133

6) multiply_by12

[image: Multiply by 12]
Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by12(103)
print(a)

>>> 1236

[image: Multiply by 13, 14, 15, 16, 17, 18, 19]

7) multiply_by13

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by13(103)
print(a)

>>> 1339

8) multiply_by14

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by14(103)
print(a)

>>> 1442

9) multiply_by15

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by15(103)
print(a)

>>> 1545

10) multiply_by16

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by16(103)
print(a)

>>> 1648

11) multiply_by17

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by17(103)
print(a)

>>> 1751

12) multiply_by18

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by18(103)
print(a)

>>> 1854

13) multiply_by19

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by19(103)
print(a)

>>> 1957

Recurring

1) recuring_fractionto_decimal

[image: Recurring numbers]
[image: Recurring numbers]
Implementation:

import vedicpy as vedic

result = vedic.recurring.recuring_fractionto_decimal(11, 19)
print(result)

>>> 0.578947

The functions returns a decimal value with a round off on 6 digits.

Square

1) square_ending5

[image: square of ending with 5]
Implementation:

import vedicpy as vedic

a= vedic.square.square_ending5(35)
print(a)

>>> 1225

2) square_near_powerof10

[image: square near power of 10]
Implementation:

import vedicpy as vedic

a= vedic.square.square_near_powerof10(98)
print(a)

>>> 9604

3) square_under100

[image: square of 2 digit number]
[image: square of 2 digit number]
Implementation:

import vedicpy as vedic

a= vedic.square.square_under100(69)
print(a)

>>> 4761

4) square_from100_to1000

[image: square of 3 digit number]
Implementation:

import vedicpy as vedic

a= vedic.square.square_from100_to1000(983)
print(a)

>>> 966289

Squareroot

1) squareroot_check

[image: squareroot example]
If the number passes all the parameter then it can be a perfect square.

Implementation:

import vedicpy as vedic

a= vedic.squareroot.squareroot_check(144)
print(a)
print(type(a))

>>> True
>>> <class 'bool'>

This function returns a boolean value.

2) perfect_sqrt_under_sqof100

[image: squareroot example]
[image: squareroot example]
Implementation:

import vedicpy as vedic

a= vedic.squareroot.perfect_sqrt_under_sqof100(144)
print(a)

>>> 12

Vedic Mathematics doesn’t provide a way to square root accurately. So, if it says that the number is a perfect square there is still some chance that it is not.

BSD 3-Clause License

Copyright (c) 2020, Utkarsh Mishra
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Help and Contact

Questions or Trouble related to package? Please contact utkarsh.um07@gmail.com.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/utkarsh0702/vedicpy/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

vedicpy could always use more documentation, whether as part of the
official vedicpy docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/utkarsh0702/vedicpy/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up vedicpy for local development.

	Fork the vedicpy repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/vedicpy.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv other
$ cd other/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

Credits

Contributors

	Utkarsh Mishra

	Ashish Kumar

Index

 _static/up-pressed.png

_static/minus.png

_static/plus.png

_images/cube1.png
Yavadunam Method

This method explained earlier can be used in this case also, with modifications. The answer consists of
3 portions as given here under.
« Twice the excess (deviation) is added to the number. This forms Left Portion of the answer.
« The product of new excess and the original excess forms the Middle Portion of the answer.
« The cube of the initial excess forms the Right Portion of the answer.
This is explained below with examples.

Example 1: Find the cube of 13. Example 2: Find the cube of 106.
Base = 10. Deviation = +3. Base = 100. Deviation = +6.
New excess =3 + 6=9 New excess = 6+12=18
(Deviation + Twice deviation) Hence, (Deviation + Twice deviation) Hence,
13* 106°
13+6:9x3 T106+12:18%x6:6
19:27:27 T118:108:216
1977 1180816
22 12
2197 1191016

Therefore, 137 = 2197 Therefore, 106° = 1191016

_images/cube2.png
Straight Cubing of 2 digit numbers

To find cube of any number directly we use the formula: (a + b)? = @® + 3a% + 3ab + b*
We rewrite this as
a® ab ab’ b’
2% 2ab’
T @ 3ab 3¢ b
The form makes it easy to compute the cube any 2 digit number. The following examples will show
how this could be done.

Method

* Find the values of a°, a’b, ab’, b’ and write them as shown.
* Also double the vales of a’b, ab? and write them under respective column.
« Compute the cube of the number from the resutt.

_images/3digit.png
Squaring of 3 digit numbers

Wehave: (a+ b +) = a® +2ab + (b +2ac) + 2bc +
Or (a+b+0)” = D(a)+D(ab)+D(abc)+D(bc)+D(c).

We use this property as follows.

(abcy” = D(a) : D(ab) : D(abc): D(bc) D(c)

This is clear from the following examples.

Example 1: Find the square of 234. Working (Mental)
234 Step1:D(2) =22 =4
D(2):D(23):D(234):D(34):D(4) Step 2: D(23) = 2x2x3 =12

Step 3: D(234) = 3*+2x2x4=25.
Step 4: D(34) = 2x3x4 =24
Step 5: D(4) = 4% =16.

Hence, 234% = 129

_static/up.png

_images/divisibility.png
If we divide one number by another number and get a whole number, we say that the first number is
divisible by the second. This property of division is called divisibility. For example,

25isdvisible by 5.; 12is divisible by 2, 3,4, 6.

63 is divisible by 3, 7, 9. etc.

Divisibility Criteria - Here are divisibility Criteria for a first few integers:

Divisor Criteria Examples
2 Al even numbers 12;24; 136
3 Sum of digits is divisible by 3 | 15; 234
7 Last two digits divisible by 4 1932; 2016
5 Last digit is 0 or 5 15; 210; 305
6 Numbers divisible by 2and 3 | 36; 1236
B Last four digits divisible by 8 451936
9 Sum of digits divisible by 9 27, 173;

_images/division.png
Division by 9

32+9

52+9

75+9

3102+9

312+9

902

@15 where 5 = 3+2

ol

Or7 where 7=5+2

ol

@ r12 where 12 = 7+5 remainder > 9

=813
9)3102
34416

9)312
3416

When dividing by 9,
The remainder is always the
digit sum of the original number

_images/cube3.png
Example 4: Find the cube of 47.
Here,a=4,b=7.
64 112 196 343
24 392
T 64 336 588 343
64683
384
353

103823
Hence, 47° = 103823

_images/cuberoot.png
Example 2:

Find the cube root of 195112.

No of cube root digits = 6/3 = 2.
Grouping of digits = 195" 112

First cube root digit = 5 (5° < 195)
Modified Devisor = 3x5* = 75.

195 2
7 70 101 51
58.00

Working (Mental)

Step 1: 195 - 5% = 195 — 125 = 70. As shown

Step 2: 701 + 75 = 8 R 101. As shown

Step 3: But, 3ab’ = 3x5x8’ = 960
1101-960 = 51+ 75 =0 R 51

Step 4: But, b’ = 8 = 512
512-512=0+75=0R0

Hence, Cube Root of 195112 = 58.

_images/ending_5.png
Ekadhika method

We studied earlier the method of finding the square of numbers ending in 5 under Ekadhika
multiplication. E.g., 35°= 3 x 4/ 25 = 1225,

652 =6x7/25= 4225, etc.

If the number is large we can use Urdhva Tiryak multiplication in concurrence to achieve this. This is
illustrated in the following examples.

Example 1: Find the square of 285. Example 2: Find the square of 1235.
2852=28x29/25 1235% = 123x 124 / 25
28 But, 123
x29 x124
T a4z T 14142
37 111
812 T 15252

Therefore, 285° = 812/25 = 81225. Therefore, 12357 = 15252/25 = 1525225.

_images/equal_1.png
Multiplication of 2 x 2 digit numbers.

Method

Write the numbers one below the other.
ab

xcd

Divide the answer space into three parts using siash (/) or colon (:).

Step 1: Find (a x ¢) — Multiplying vertically on left side.

Step 2: Find (a x d + b x) — Multiplying crosswise and adding.

Step 3: Find (b x d) — Multiplying vertically on right side.

Write the respective products at appropriate places in the answer space.

_images/2digit_1.png
Squaring of 2 digit numbers

We have: (a + b)? = 2 + 2ab + b?

O (a + b’ = D(a) + D(ab) + D(b).

We use this property as follows.

(ab)? = D(a) : D(ab) : D(b)

This is clear from the following examples.

Example 1: Find the square of 36. Working (Mental)
36 Step 1:D(3) =3 =9
T D(3):D(36):D(6) Step 2: D(36) = 2x3x6 =36
T 9:36:36 Step 3: D(6) = 6 =36.
966 Hence, 36 = 1296

33

_images/2digit_2.png
1296

_images/equal_2.png
Multiplication of 3 x 3 digit numbers.

Method

Write the numbers one below the other.
abe
xdef
Divide the answer space into 5 parts using siash (/) or colon (:).
Step 1: Find (a x d)
Step 2: Find (a xe + bx d)
Step 3: Find (a xf+ bx e+ cxd).
Step 4: Find (bx f +cx €)
Step 5 find (c xf)
Write the respective products at appropriate places in the answer space.

nav.xhtml

 Table of Contents

 		
 vedicpy documentation

 		
 Installation

 		
 Tutorial

 		
 Overview

 		
 Quickstart

 		
 Troubleshooting

 		
 Important Error

 		
 Compliment

 		
 1) compliment_to_power_of10

 		
 Cube

 		
 1) cube_a_number_near_powerof10

 		
 2) cube_2digit_number

 		
 Cuberoot

 		
 1) cuberoot_check

 		
 2) cuberoot_under_1000000

 		
 Divisibility

 		
 1) divisibility_under10

 		
 Division

 		
 1) division_by9

 		
 Multiplication

 		
 1) multiply_by_9group

 		
 2) multiply_base_near_powerof10

 		
 3) multiply_equdigit_number

 		
 4) multiply_lastdigit_sumto10

 		
 5) multiply_by11

 		
 6) multiply_by12

 		
 7) multiply_by13

 		
 8) multiply_by14

 		
 9) multiply_by15

 		
 10) multiply_by16

 		
 11) multiply_by17

 		
 12) multiply_by18

 		
 13) multiply_by19

 		
 Recurring

 		
 1) recuring_fractionto_decimal

 		
 Square

 		
 1) square_ending5

 		
 2) square_near_powerof10

 		
 3) square_under100

 		
 4) square_from100_to1000

 		
 Squareroot

 		
 1) squareroot_check

 		
 2) perfect_sqrt_under_sqof100

 		
 BSD 3-Clause License

 		
 Help and Contact

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Contributors

_images/last_digit_10_2.png
Example 1: Example 2: Example 3:

Multiply 51 x 59 Multiply 66 x 64 Multiply 123 x 127
Same previous digit: 5, Same previous digit: 6, Same previous digits: 12,
Sum of last digits: 1+9=10. Sum of last digits: 6+4=10. Sum of last digits: 3+7=10.
51% 59 66 x 64 123x 127
Sx(5+D) /1x9 6x(6+1)/6x4 12x(12+1)/3x7
30709 27 156721
Thus, 51x59=3009. Ths, 66 x 64=4224. Thus, 123 x 127=15621.

Note that 0 has been added on RHS.

_images/logo.png

_images/equal_3.png
Multiplication of 4 x 4 digit numbers.
Method

« Write the numbers one below the other.
abcd

xef gh
« Divide the answer space into 7 parts using slash (/) or colon ().
« Step 1: Find (a xe)
« Step2:Find (axf+bxe)
« Step3:Find (axg +bxf+cxe).
« Step4:Find (axh +dxe+bxg+cxf)
« Step5:Find (bxh+cxg+dxf)
« Step6: Find (cxh +dxg)
« Step7: Find (dxh)
« Write the respective products at appropriate places in the answer space.

_images/last_digit_10_1.png
Ekadhikena Multiplication

This is another simple method. The Vedic Sutra used in this method is "One more than the previous
one" - Ekadhikena. Two different cases arise here.

Case I - Last digits adding to 10.

The numbers used in this method must obey the following conditions.
Both the numbers must have the same previous digit(s).

‘The sum of the last digits must be 10.

Numbers like 54 and 56, 42 and 48, 23 and 27, 34 and 36 form the examples.

_images/multiply_by12.png
Multiplication by 12
This is similar to the one discussed earlier. But, there is a slight difference. This employs the Vedic
Sutra " Utimate and twice the penultimate. According to this, we must add twice the penultimate digit to

the ultimate digit.
Consider the number 32. Here, penultimate digit is 3 and the ultimate digit is 2. By the above Sutra,

the required sun = 3x 2 +2 =8.

Example 1: Multiply 123 x 12 Working from left to right (Mental work)
123x12 Write the multiplicand as shown and add twice the penultimate
T 01230 digit to ultimate digit.
T 1476 0x2+1=1,1x2+2=4,
Thus, 123x 12 = 1476 2x2+3=7,3x2+0=6.
Example 2: Multiply 396 x 12 Working from left to right (Mental work)
396 x 12 Write the multiplicand as shown and add twice the penultimate
T 03960 digit to ultimate digit.
T 3542 0x2+3=3,3x2+9=15,
121 9X2+6=24,6x2+0=12.
4752

Thus, 396 x 12 = 4752

_images/multiply_by_9group.png
Example 1: Multiply 4 x 9
4x9
7

76
36
This, 4x9 =36
Example 2: Multiply 76 x 99
76 %99
76-1/24
7524
Thus, 76x 99 = 7524
Example 3: Multiply 353 x 999
353 % 999
353-1/647
352647
Thus, 353 x 999 = 352647

Working from left to right (Mental work)
LHS=4-1=3 (Ekanyunena)
RHS = 10 -4 = 6 (Complement of 4 from 10)

Working from left to right (Mental work)
LHS=76-1=75 (Ekanyunena)
RHS =100-76= 24 (Complement of 76 from 100)

Working from left to right (Mental work)

LHS =353 -1=352 (Ekanyunena)
RHS=1000 — 353=647 (Complement of 353 from 1000)

_images/multiply_by11_1.png
Multiplication by 11
Multiplication of a number by 11 is very easy. It is as good as addition. This method is explained below.
Method

« Sandwich the given number between zeros.

« Starting from left end add the digits taking them in pairs.

« If the total exceeds 9, retain the first digit and carry over the other digits to the left.

_images/multiply_by11_2.png
Example1: Multiply 135 x 11 Working from left to right (Mental work)

Write the multiplicand as shown Addition of digits in pair is shown below.
and add the digits in pair. 0+1=1,
135x 11 143=4,
T 01350 3+5=8,
T 1485 5+40=5
Thus, 135 x 11 = 1485
Example 2: Multiply Working from left to right (Mental work)
58403 x 11 Addition of digits in pair is shown below.
58403 x 11 0+5=55+8=13,8+4=12,
0584030 4+40=4,0+3=33+0=3.
T 532433
11
T 642433

Thus, 58403 x 11 = 642433

_images/near_power_of10.png
Yavadunam Method

‘The Vedic Sutra "Deviate as much as deviation and add square of the deviation". This is known as
Yavadunam Sutra. We shall see the application of this Sutra to find the square of numbers.
The answer consists of 2 portions as given here under.

« The excess (deviation) is added to the number. This forms the Left Portion of the answer.
« The square of the initial excess forms the Right Portion of the answer.
This is explained below with examples.

Example 1: Find the square of 12.

Here, Base = 10, Deviation = 12 - 10 = +2.
Hence, 12 = 12 + 2/ 2% = 144.

Example 2: Find the square of 108.

Here, Base = 100, Deviation = 108 ~ 100 = +08.
108’ = 108 + 08 / 087 = 11664. (Digit Rule)

Example 3: Find the square of 1015.

Base = 1000, Deviation = 1015 - 1000 = +015.
1015% = 1015 + 015 / 015% = 1030225.

_images/other.png
This method can be extended for multiplication with 13, 14, 15, ..., 19 with little modification. Instead
of twice we have to take threetimes, fourtimes, etc. Try this!

_images/power_10_1.png
Nikhilam Multiplication

As the deviation is obtained by Nikhilam sutra we call the method as Nikhilam multiplication. This is a
special method to multiply two numbers near a base or one number near the base and the other a little

away from the base. The method of multiplication is given below.

Method

Write the numbers one below the other in base system.
Divide the answer space into LHS and RHS by placing a slash (/) or a colon ().

Add or subtract one number with the deviation of the other number and write it on the LHS. (i.e.,
cross-sum or cross-difference)

Write the product of the deviations on RHS.

The number of digits on RHS must be same as the number of zeros in the base. If less, prefix the
answer with the zeros. If more, transfer extra digits to the RHS. (Digit Rule)

Take due care to the sign (+/-) while adding or multiplying the numbers.

Remove the slash.

Three different cases are possible.

_images/recurring_2.png
Convert 11/19 into recurring decimal.

The denominator = 19. Previous digit = 1. Ekadhika is 1+1=2.
11/19= 11/20 = 1.1/2 = 0.,5,7:89,:47,3,68421

Therefore, 11/19 = 578947368421
Convert 1/7 into recurring decimal.
Here, number of decimal places is (7 - 1
1/7 = 7/49. The denominator is 49.
Previous digit = 4. Ekadhika is 4+1=5.
7/49 = 7/50 = 0.7/5 = 0.,1:4:2:8,57
Therefore, 1/7 = 0.142857.

Convert 9/39 into recurring decimal.

‘The denominator = 39. Previous digit = 3. Ekadhika is 3+1=4.
9/39= 9/40 = 0.9/4 =0.,23,0769. Therefore, 9/39 = 0.230769.

_images/squareroot.png
For all the numbers ending in 1, 4, 5, 6, & 9 and for numbers ending in even zeros,
then remove the zeros at the end of the number and apply following tests:

« Digital roots are 1, 4, 7 or 9. No number can be a perfect
square unless its digital root is 1, 4, 7, or 9. You might
already be familiar with computing digital roots. (To find
digital root of a number, add all its digits. If this sum is
more than 9, add the digits of this sum. The single digit
obtained at the end is the digital root of the number.)

« If unit digit ends in 5, ten’s digit is always 2.

« If it ends in 6, ten’s digit is always odd (1, 3, 5, 7, and 9)
otherwise it is always even. That is if it ends in 1, 4, and 9
the ten’s digit is always even (2, 4, 6, 8, 0).

« If a number is divisible by 4, its square leaves a remainder
0 when divided by 8.

« Square of even number not divisible by 4 leaves remainder
4 while square of an odd number always leaves remainder 1
when divided by 8.

« Total numbers of prime factors of a perfect square are
always odd.

_images/power_10_2.png
Example 1: Multiply 6 x 8.
6-4
x8-2
478
a8
Thus, 6x8=48

Example 2: Multiply 92 x 97.

92-08
x97-03
89/24

8924

Thus, 92 x 97 = 8924

Example 3: Multiply 91 x 99.

91-09
x99-01
90709
9009
Ths, 91 x 99 = 9009

Working from left to right (Mental work)
Base = 10, RHS Digits = 1
IHS=6-2=40r8-4=4
RHS=-4x-2=8

Note: Numbers are written in Base System.

Working from left to right (Mental work)
Base = 100, RHS Digits = 2

LHS = 92 - 03 = 89 or 97 - 08 = 89
RHS = - 08x - 03 = 24

Note the number of digits in deviation.

Working from left to right (Mental work)

Base = 100, RHS Digits = 2
LHS = 91-01 = 90 or 99 - 09 =90

RHS = - 09 x - 01 = 09 (Digit Rule)

_images/recurring_1.png
A decimal with a sequence of digits that repeats itself indefinitely is called recurring decimal.
The Vedic Sutra Ekadhika helps us to convert Vulgar fractions of the type 1/p9, where p= 1, 2,3, . ..
9, into recurring decimals. The number of decimal places before repetition is the difference of numerator
and denominator. The devisor can be found using Sutra "One more than the previous one”.
Conversion of a few wulgar fractions is shown below. The method is simple and does not require actual
division. It is only simple division with small figures.

_images/squareroot_1.png
Example 1: Find the square root of 1156.
No of square root digits = 4/2 = 2.
Grouping of digits = 11'56.
First square root digit = 3 (3* < 11)
Modified Devisor = 3x2 = 6.
156
6 21
340
Working (Mental)
Step1:11-3=11-9=2

_images/squareroot_2.png
Step2:25+6=4R1
Step3:16-D(4) = 16 -4 =0
Hence, Square Root of 1156 = 34.
Example 2: Find the square root of 6241.
No of square root digits = 4/2 = 2.
Grouping of digits = 62'41.
First square root digit = 7 (7° < 62)
Modified Devisor = 7x2 = 14.

62 41

138

790
Working (Mental)
Step1:62-7°=62-49 =13
Step2:134+14=9R8
Step3:81-D(9)=81-9"=0
Hence, Square Root of 6241 = 79.

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/logo.png

_static/file.png

