
vedicpy Documentation
Release 0.1.0

Utkarsh Mishra

Sep 18, 2020

Getting started

1 Installation 3

2 Tutorial 5

3 Troubleshooting 7

4 Compliment 9

5 Cube 11

6 Cuberoot 15

7 Divisibility 17

8 Division 19

9 Multiplication 21

10 Recurring 31

11 Square 33

12 Squareroot 37

13 BSD 3-Clause License 41

14 Help and Contact 43

15 Contributing 45

16 Credits 47

i

ii

vedicpy Documentation, Release 0.1.0

A Python Package for Vedic Mathematics

For humans, through regular mathematical steps, solving problems sometimes are complex and time-consuming. But
using Vedic Mathematic’s General Techniques (applicable to all sets of given data) and Specific Techniques (applicable
to specific sets of given data), numerical calculations can be done very fast.

This package is a python implementation of Vedic mathematical sutras. It uses the Vedic mathematics for performing
basic mathematical operations like multiplication, division, square roots, cube roots etc.

Since Vedic maths sutras work on individual digits in a number as opposed to the whole number, the implementation
works slower on small digit numbers but works faster on larger digit numbers and some other operations like finding
the square root or the cube root of a number.

Getting started 1

https://pypi.python.org/pypi/vedicpy
https://pypi.python.org/pypi/vedicpy
https://github.com/utkarsh0702/vedicpy/blob/master/LICENSE

vedicpy Documentation, Release 0.1.0

2 Getting started

CHAPTER 1

Installation

The simplest way to install vedicpy is through the Python Package Index (PyPI). This will ensure that all required
dependencies are fulfilled. This can be achieved by executing the following command:

pip install vedicpy

3

vedicpy Documentation, Release 0.1.0

4 Chapter 1. Installation

CHAPTER 2

Tutorial

This section covers the fundamentals of developing with vedicpy, including a package overview, basic and advanced
usage.

2.1 Overview

The vedicpy package is structured as collection of submodules:

• vedicpy

– vedicpy.compliment Functions for calculating the compliment of a number.

– vedicpy.cube Functions for calculating cube of a number.

– vedicpy.cuberoot Functions for checking and calculating cube root of a number.

– vedicpy.divisibility Function for finding whether a number is divisible by the given number or not.

– vedicpy.division Function for calculating quotient and reminder.

– vedicpy.multiply Functions for calculating the multiplication of two number using vedic mathematical
sutras.

– vedicpy.recurring Function for converting fractional number to its corresponding recurring decimal.

– vedicpy.square Functions for calculating square of a number.

– vedicpy.squareroot Functions for checking and calculating square root of a number.

2.2 Quickstart

Before diving into the details, we’ll walk through a brief example program

5

vedicpy Documentation, Release 0.1.0

Example of calculating the cube of a number
import vedicpy as vedic

calling cube_2digit_number from vedic.cube
result = vedic.cube.cube_2digit_number(67)

print(result)

In the program we first call the package by using import and by giving a compact syntax to it by using vedic as
the name.

Then we simply call the cube_2digit_number function from cube module present in vedicpy.

As the name suggest cube_2digit_number function only cubes 2 digit integer numbers and returns an interger
value that is stored in variable result and then we simply print that value of the variable.

6 Chapter 2. Tutorial

CHAPTER 3

Troubleshooting

If you have questions about how to use vedicpy, please email me at utkarsh.um07@gmail.com.

For bug reports and other, more technical issues, consult the github issues.

3.1 Important Error

Vedic Mathematics doesn’t provide a way to calculate square root and cube root accurately. So, if it says that the
number is a perfect square or a perfect cube there is still some chance that it is not.

7

mailto:utkarsh.um07@gmail.com
https://github.com/utkarsh0702/vedicpy/issues

vedicpy Documentation, Release 0.1.0

8 Chapter 3. Troubleshooting

CHAPTER 4

Compliment

4.1 1) compliment_to_power_of10

The Complement of a number is the difference between that number and the next higher power of 10. 3 is the
complement of 7 (as next higher power of 7 is 10). 34 is the complement of 66 (as next higher power of 66 is 100).

Vedic Sutra:

Nikhilam Navatah Charamam Dasatah

which means, All from 9 and last from 10.

Details: We have to get the complement (Nikhilam) for the entire number by using 10 for the digit in the units place
and by using 9 for the remaining digits.

Implementation:

import vedicpy as vedic

a= vedic.compliment.compliment_to_power_of10(123)
print(a)

>>> 877

9

vedicpy Documentation, Release 0.1.0

10 Chapter 4. Compliment

CHAPTER 5

Cube

5.1 1) cube_a_number_near_powerof10

Implementation:

11

vedicpy Documentation, Release 0.1.0

import vedicpy as vedic

a= vedic.cube.cube_a_number_near_powerof10(103)
print(a)

>>> 1092727

5.2 2) cube_2digit_number

12 Chapter 5. Cube

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.cube.cube_2digit_number(37)
print(a)

>>> 50653

5.2. 2) cube_2digit_number 13

vedicpy Documentation, Release 0.1.0

14 Chapter 5. Cube

CHAPTER 6

Cuberoot

6.1 1) cuberoot_check

Let’s define something called a Digital root.

It is the sum obtained after iteratively adding the digits of a number, till a single digit remains.

For example,

• For 345, digital root of 345 => 3 + 4 + 5 =12. Now, 12 => 1+2 = 3.12=1+2=3. So, digital root of 345 = 3.

• For 12345678, digital root is 1+2+3+4+5+6+7+8 = 36. Now, 3+6 = 9. So, digital root of 12345678 = 9.

Turns out that for all perfect cubes, the digital root will either be 1,8,9. 0 is not included as 0 is a perfect cube of itself.

Anyways, if for a number xx you get a digital root that is not 1,8,9 you can confidently say that xx is NOT a perfect
cube.

If the digital root is 1, 8, 9, 0 the number may or may not be a perfect cube.

Implementation:

import vedicpy as vedic

a= vedic.cuberoot.cuberoot_check(123)
print(a)
print(type(a))

>>> False
>>> <class 'bool'>

This function returns a boolean value.

15

https://en.wikipedia.org/wiki/Digital_root

vedicpy Documentation, Release 0.1.0

6.2 2) cuberoot_under_1000000

Implementation:

import vedicpy as vedic

a= vedic.cuberoot.cuberoot_under_1000000(175616)
print(a)

>>> 56

Vedic Mathematics doesn’t provide a way to cube root accurately. So, if it says that the number is a perfect cube there
is still some chance that it is not.

16 Chapter 6. Cuberoot

CHAPTER 7

Divisibility

7.1 1) divisibility_under10

Implementation:

import vedicpy as vedic

divisibility_under10() function takes two arguments,
first one is dividend and the other one is divisor
vedic.divisibility.divisibility_under10(108, 9)

17

vedicpy Documentation, Release 0.1.0

>>> The number is divisible.

The function doesn’t return any value.

The divisibility test is only applicable for divisor less than 10 excluding 1 and 7.

18 Chapter 7. Divisibility

CHAPTER 8

Division

8.1 1) division_by9

19

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

division_by9() function takes a single argument that is divident.
vedic.division.division_by9(110)

>>> The quotent is: 12
>>> The reminder is: 2

The function doesn’t return any value.

20 Chapter 8. Division

CHAPTER 9

Multiplication

9.1 1) multiply_by_9group

Implementation:

21

vedicpy Documentation, Release 0.1.0

import vedicpy as vedic

a= vedic.multiply.multiply_by_9group(234)
print(a)

>>> 233766

9.2 2) multiply_base_near_powerof10

22 Chapter 9. Multiplication

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_base_near_powerof10(109,91)
print(a)

>>> 9919

9.2. 2) multiply_base_near_powerof10 23

vedicpy Documentation, Release 0.1.0

9.3 3) multiply_equdigit_number

24 Chapter 9. Multiplication

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_equdigit_number(1234, 4567)
print(a)

>>> 5635678

9.4 4) multiply_lastdigit_sumto10

9.4. 4) multiply_lastdigit_sumto10 25

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_lastdigit_sumto10(24, 26)
print(a)

>>> 624

9.5 5) multiply_by11

26 Chapter 9. Multiplication

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by11(103)
print(a)

>>> 1133

9.5. 5) multiply_by11 27

vedicpy Documentation, Release 0.1.0

9.6 6) multiply_by12

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by12(103)
print(a)

>>> 1236

9.7 7) multiply_by13

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by13(103)
print(a)

28 Chapter 9. Multiplication

vedicpy Documentation, Release 0.1.0

>>> 1339

9.8 8) multiply_by14

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by14(103)
print(a)

>>> 1442

9.9 9) multiply_by15

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by15(103)
print(a)

>>> 1545

9.10 10) multiply_by16

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by16(103)
print(a)

>>> 1648

9.11 11) multiply_by17

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by17(103)
print(a)

>>> 1751

9.8. 8) multiply_by14 29

vedicpy Documentation, Release 0.1.0

9.12 12) multiply_by18

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by18(103)
print(a)

>>> 1854

9.13 13) multiply_by19

Implementation:

import vedicpy as vedic

a= vedic.multiply.multiply_by19(103)
print(a)

>>> 1957

30 Chapter 9. Multiplication

CHAPTER 10

Recurring

10.1 1) recuring_fractionto_decimal

31

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

result = vedic.recurring.recuring_fractionto_decimal(11, 19)
print(result)

>>> 0.578947

The functions returns a decimal value with a round off on 6 digits.

32 Chapter 10. Recurring

CHAPTER 11

Square

11.1 1) square_ending5

Implementation:

import vedicpy as vedic

a= vedic.square.square_ending5(35)
print(a)

33

vedicpy Documentation, Release 0.1.0

>>> 1225

11.2 2) square_near_powerof10

Implementation:

import vedicpy as vedic

a= vedic.square.square_near_powerof10(98)
print(a)

>>> 9604

34 Chapter 11. Square

vedicpy Documentation, Release 0.1.0

11.3 3) square_under100

Implementation:

import vedicpy as vedic

a= vedic.square.square_under100(69)
print(a)

>>> 4761

11.3. 3) square_under100 35

vedicpy Documentation, Release 0.1.0

11.4 4) square_from100_to1000

Implementation:

import vedicpy as vedic

a= vedic.square.square_from100_to1000(983)
print(a)

>>> 966289

36 Chapter 11. Square

CHAPTER 12

Squareroot

12.1 1) squareroot_check

37

vedicpy Documentation, Release 0.1.0

If the number passes all the parameter then it can be a perfect square.

Implementation:

import vedicpy as vedic

a= vedic.squareroot.squareroot_check(144)
print(a)
print(type(a))

>>> True
>>> <class 'bool'>

This function returns a boolean value.

12.2 2) perfect_sqrt_under_sqof100

38 Chapter 12. Squareroot

vedicpy Documentation, Release 0.1.0

Implementation:

import vedicpy as vedic

a= vedic.squareroot.perfect_sqrt_under_sqof100(144)
print(a)

>>> 12

Vedic Mathematics doesn’t provide a way to square root accurately. So, if it says that the number is a perfect square
there is still some chance that it is not.

12.2. 2) perfect_sqrt_under_sqof100 39

vedicpy Documentation, Release 0.1.0

40 Chapter 12. Squareroot

CHAPTER 13

BSD 3-Clause License

Copyright (c) 2020, Utkarsh Mishra All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

41

vedicpy Documentation, Release 0.1.0

42 Chapter 13. BSD 3-Clause License

CHAPTER 14

Help and Contact

Questions or Trouble related to package? Please contact utkarsh.um07@gmail.com.

43

mailto:utkarsh.um07@gmail.com

vedicpy Documentation, Release 0.1.0

44 Chapter 14. Help and Contact

CHAPTER 15

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

15.1 Types of Contributions

15.1.1 Report Bugs

Report bugs at https://github.com/utkarsh0702/vedicpy/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

15.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

15.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

45

https://github.com/utkarsh0702/vedicpy/issues

vedicpy Documentation, Release 0.1.0

15.1.4 Write Documentation

vedicpy could always use more documentation, whether as part of the official vedicpy docs, in docstrings, or even on
the web in blog posts, articles, and such.

15.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/utkarsh0702/vedicpy/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

15.2 Get Started!

Ready to contribute? Here’s how to set up vedicpy for local development.

1. Fork the vedicpy repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/vedicpy.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv other
$ cd other/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

15.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

46 Chapter 15. Contributing

https://github.com/utkarsh0702/vedicpy/issues

CHAPTER 16

Credits

16.1 Contributors

• Utkarsh Mishra

• Ashish Kumar

47

	Installation
	Tutorial
	Troubleshooting
	Compliment
	Cube
	Cuberoot
	Divisibility
	Division
	Multiplication
	Recurring
	Square
	Squareroot
	BSD 3-Clause License
	Help and Contact
	Contributing
	Credits

